
LY86-64: Implementation and Evaluation of a Y86 Browser-Based Simulator

By

Chau Bao Ly

Honors Thesis

Appalachian State University

Submitted to the Department of Computer Science

in partial fulfillment of the requirements for the degree of

Bachelor of Science

May 2021

Approved by:

Cindy Norris, Ph.D., Thesis Project Director

Frank Barry, M.S., Second Reader

Alice McRae, Ph.D., Departmental Honors Director

Raghuveer Mohan, Ph.D., Departmental Honors Director

Copyright ©️ Chau Bao Ly 2021
All Rights Reserved

Abstract
The Y86-64 PIPE project is a seminal project for Appalachian State University

Computer Science majors. For many students, it is their first software product of

significant size. After completing the project, students have a better understanding of

computer systems and the software engineering skills and tools needed to develop

large pieces of software. However, to implement the code, students need a

sophisticated understanding of the machine being simulated. Of particular difficulty is

the control logic and signals that direct the stages of the PIPE machine. Several Y86-64

simulators are available, but existing simulators display only the contents of memory

and general-purpose registers. They do not provide a visualization of the complicated

control logic and signals applied to pipeline registers. For this reason, we undertook

the development of the LY86-64 (pronounced “lee 86-64”), a Y86-64 browser-based

simulator. A survey of 47 students, some currently studying the Y86-64 PIPE machine

and some who studied the machine in a previous semester, found that 100% of

respondents believed that the simulator provides a better understanding of the control

logic.

Table of Contents
List of Figures
List of Tables

5
6

Chapter 1: Introduction 7

Chapter 2: Background
2.1 The Y86-64 PIPE Machine

2.1.1 Instruction Set
2.1.2 PIPE Machine
2.1.3 Pipeline Hazards

2.2 Angular
2.2.1 Architecture
2.2.2 TypeScript
2.2.3 Summary and Example

9
9

10
16
22
32
32
34
36

Chapter 3: Related Work
3.1 YESS: A Y86 Pipelined Processor Simulator
3.2 Bogi Napoleon Wennerstrøm’s Y86-64 Simulator
3.3 Shu Ding’s Y86 Emulator
3.4 Linghao Zhang’s Y86 Simulator
3.5 Tianhong Chu’s Y86 Simulator
3.6 Comparison

43
43
45
46
48
50
52

Chapter 4: LY86-64
4.1 Overview
4.2 Design
4.3 Implementation

4.3.1 Components
4.3.2 Services

54
54
56
58
60
67

Chapter 5: Results
5.1 User Experience

5.1.1 User-friendliness
5.1.2 Output Understanding

5.2 Improved Understanding

72
73
73
76
78

Chapter 6: Future Work 81

References 86

4

List of Figures
2.1 Y86-64 register identifiers
2.2 Y86-64 instruction set
2.3 Y86-64 PIPE machine’s hardware structure
2.4 Pipeline control logic
2.5 HCL for pipeline control
2.6 TypeScript additions to JavaScript
2.7 The parent’s source file
2.8 The parent’s view file
2.9 The child’s source file
2.10 The child’s view file
2.11 UtilsService source file
2.12 The application’s router source file
2.13 Browser display of the HomeComponent and ChatComponent

10
12
18
26
29
36
37
38
38
39
40
41
42

3.1 YESS output
3.2 Bogi Napoleon Wennerstrøm’s Y86-64 Simulator
3.3 Shu Ding’s Y86 Emulator
3.4 Linghao Zhang’s Y86 Simulator
3.5 Linghao Zhang’s simulator performance analysis
3.6 Tianhong Chu’s Y86 output

44
46
47
49
50
51

4.1 LY86-64 simulating a load/use hazard
4.2 Layout wireframe
4.3 Angular router for the LY86-64 simulator
4.4 View file for SimulatorComponent
4.5 View file for ControlComponent
4.6 View file for the CodeComponent
4.7 Render of the CodeComponent
4.8 Render of the control buttons
4.9 Step button event handler
4.10 Render of the PipelineRegComponent
4.11 Render of the ControlLogicComponent
4.12 Simulation logic inside of the CpuService

55
56
59
60
62
63
64
64
65
66
67
69

5.1 User opinion on uploading a .yo file
5.2 User opinion on stepping through instructions
5.3 User understanding of colors
5.4 User understanding of the HCL
5.5 Group 1 understanding of stalling and bubbling
5.6 Group 2 understanding of stalling and bubbling

74
75
77
78
79
80

5

List of Tables
3.1 Comparison Between Other Related Works and the LY86-64 Simulator
4.1 LY86-64 Component Tree and List of Services

52
58

6

Chapter 1: Introduction

Software developers who have studied computer systems are better prepared to

find and correct bugs and write code that is fast and efficient. For example, an

understanding of the cache memory can enable a programmer to write code which uses

the cache effectively, i.e., has good locality. Programmers that understand virtual memory

also know what a segmentation fault is. Incorrect program results could be due to an

overflow or finite precision arithmetic, both which are artifacts of computer hardware.

Understanding instruction-level parallel architectures allows a programmer to consider the

control and data hazards that can impact the performance of the code. In general, a

comprehension of computer systems can enable developers to write correct, secure, and

efficient code [4].

Unfortunately, computer systems courses are notoriously difficult. The

three-semester sequence of systems courses required for Computer Science majors at

Appalachian State University has the reputation of being among the most challenging

required courses for the major. For this reason, educators have investigated numerous

techniques for making the material more accessible, including the use of architecture

simulators [1, 2, 9, 12, 13, 14, 17, 18, 19]. Of particular interest are the simulators

developed to aid students in understanding computer architecture.

At Appalachian State University, Computer Science majors implement a Y86-64 PIPE

project, a seminal project for the Computer Systems 1 course. For many students, it is their

7

first software product of significant size. After completing the project, students have a

better understanding of computer systems and the software engineering skills and tools

needed to develop large pieces of software. However, to implement the code, students

need a sophisticated understanding of the machine being simulated. Of particular difficulty

is the control logic and signals that direct the stages of the PIPE machine. Several Y86-64

simulators are available, but existing simulators display only the contents of memory and

general-purpose registers. They do not provide a visualization of the complicated control

logic and signals applied to pipeline registers. For this reason, we undertook the

development of the LY86-64 (pronounced “lee 86-64”), a Y86-64 browser-based simulator.

The LY86-64 simulator focuses on providing students with a visualization of control

logic and signals, specifically stalling and bubbling. LY86-64 supports 64-bit signed integer

operations and is based on the implementation of the PIPE architecture in Chapter 4 of the

textbook Computer Systems: A Programmer’s Perspective by Randal E. Bryant and David R.

O’Hallaron [4].

The remainder of this thesis is organized as follows:

● Chapter 2 covers the required background information. Specifically, the background

information covers Y86-64 and Angular.

● Chapter 3 discusses related work. Five other Y86 simulators are described.

● Chapter 4 describes the implementation of the LY86-64 simulator in detail.

● Chapter 5 provides the results of surveys given to students who used the LY86-64

simulator.

● Chapter 6 covers plans for the future.

8

Chapter 2: Background

In this chapter, we provide the information needed to understand the LY86-64

simulator. Section 2.1 explores the Y86-64 PIPE Machine, its instruction set, and different

features. Subsequently, in Section 2.2, we introduce Angular, its architecture, and concepts.

2.1 The Y86-64 PIPE Machine

The textbook Computer Systems: A Programmer’s Perspective by Randal E. Bryant and

David R. O’Hallaron [4] provides an overview of the computer systems content that

programmers need to understand to write correct, secure and high-performance code.

Chapter 4 of the textbook focuses on pipeline architectures. Programmers can write higher

performance codes if they understand that dependencies among instructions can impact

modern, instruction-level parallel architectures. Pipelined machines are the basis of these

architectures. The book introduces pipelined machines by starting with a sequential

architecture and making incremental changes that lead to pipelining. Specifically, the

chapter describes four architectures that implement the Y86-64: SEQ, SEQ+, PIPE-, and

PIPE. The PIPE architecture is the basis of the LY86-64.

9

2.1.1 Instruction Set

The Y86-64 is based on the X86-64 instruction set architecture. However, the Y86-64

has much fewer operations and addressing modes. The Y86-64 does not include

floating-point instructions, and all operations use 8-byte signed integer operands. The

addressing modes supported include displacement (also known as base plus offset),

register, immediate, and register indirect (base plus offset with an offset of 0). Not all

addressing modes can be used with all instructions. In the Y86, the addressing modes used

for the source and destination operands are implied by the opcode.

Figure 2.1 displays a chart of the register identifiers for the Y86-64 processor’s

register file. There are a total of fifteen registers numbered zero to fourteen. By

convention, several registers are reserved for particular purposes. For example, %rsp

contains the pointer to the stack, and instructions like popq and pushq make changes to

%rsp by incrementing and decrementing it. In a function with several parameters, %rdi,

%rsi, and %rdx are used for the first, second, and third arguments. The register %rax is

reserved for the return value of a method.

Figure 2.1 Y86-64 register identifiers

10

Figure 2.2 shows the Y86 instruction set. There are a total of twenty-seven

instructions, including four moves, four arithmetic operations, seven jumps, six conditional

moves, halt, nop, call, return, push, and pop. The four move instructions are irmovq,

rrmovq, mrmovq, and rmmovq. The first two letters in the move instructions indicate the

source and destination, respectively. The source is either an immediate value (i), register

value (r), or a value from memory (m), and the destination is either a register (r) or a

memory (m) location. Operands in memory are accessed using displacement mode. For

example, the destination of the rmmovq instruction in Figure 2.2 is obtained by adding the

value of the register rB and the value of D together. rB represents the base register, and D

is the displacement.

11

Figure 2.2 Y86-64 instruction set

Instructions for arithmetic operations (OPq) include addq for addition, subq for

subtraction, andq for bitwise AND, and xorq for bitwise exclusive OR. Register rB in the

OPq instruction in Figure 2.2 is both a source and destination register. For example, in the

12

case of addq %rax, %rcx, the values of registers %rax and %rcx are added together and

the result is stored in the register %rcx. Condition codes (flags) are also set based on the

result. Specifically, the zero flag (ZF), sign flag (SF) and overflow flag (OF) are set as follows:

ZF = (result == 0);

SF = (result < 0);

OF = ((operand1 < 0) && (operand2 < 0) && (result > 0)) ||

((operand1 > 0) && (operand2 > 0) && (result < 0));

An OPq instruction typically precedes jump instructions. The OPq instruction sets

the flags, and the jump is taken or not based upon the values of the flags. The jump

instructions, jle, jl, je, jne, jge, and jg, determine whether to execute the jump or not

based on the condition codes. The letters after the j specify the condition; l is for less

than, e is for equal, and g is for greater. For example, a jl is taken if the result of the most

recently executed OPq is less than zero, i.e., SF is 1 and OF is 0 or SF is 0 and OF is 1. Notice

that the jump is taken (or not) based upon the sign of the arithmetic result (assuming

infinite precision) and not the sign of the result in the destination register.

The instructions cmovle, cmovl, cmove, cmovne, cmovge, and cmovg make up the

conditional move instructions in the Y86-64 Instruction Set Architecture (ISA). The letters

cmov indicate that the instruction is a conditional move. The letters following cmov express

the condition to be evaluated. Conditional moves only perform the register to register

move when a condition is true. For example, the instruction cmovg %r9, %rax sets %rax to

13

the value of %r9 if the result of the most recent OPq is greater than 0, which is indicated by

ZF == 0 and SF == OF. The rrmovq is an unconditional move; the move is performed

regardless of the condition codes.

The call, ret, pushq, and popq instructions support procedure calls. The call

instruction pushes the return address onto the stack and jumps to the destination address,

and the ret instruction pops the return address from the stack and jumps to that address.

Similarly, the pushq and popq instructions perform push and pop operations to the stack.

These instructions can be used to perform callee or caller saves and restores.

Finally, the halt instruction tells the machine to stop executing program

instructions, and the nop instruction injects a software bubble, which does nothing (no

operation).

The program below demonstrates a maximum function that compares two

numbers in memory and writes the greater of the two values to the memory location

following the two numbers.

.pos 0

irmovq nums, %rsi

mrmovq (%rsi), %rax

mrmovq 8(%rsi), %rdi

rrmovq %rdi, %rbx

subq %rax, %rdi

cmovg %rbx, %rax

rmmovq %rax, 16(%rsi)

14

halt

.align 8

nums: .quad 20

.quad 23

.quad 0

The first instruction, irmovq nums, %rsi loads the address corresponding to label nums

into register %rsi. Specifically, the label nums is a symbol for the address of the value 20

stored in a quadword (eight bytes) of memory. The next two instructions, mrmovq

(%rsi), %rax and mrmovq 8(%rsi), %rdi are memory to register move instructions

which load 20 and 23 into %rax and %rdi, respectively. The next instruction, rrmovq

%rdi, %rbx, performs a register-to-register move to copy the value 23 from register

%rdi into register %rbx. This is needed because the next instruction, subq %rax, %rdi,

overwrites register %rdi. The instruction subq %rax, %rdi performs the following

operation: %rdi = %rdi - %rax. When the subq instruction is executed, the condition

flags are set. In this case, since 23 (stored in %rdi) is greater than 20 (stored in %rax) the

flags are set as follows: SF = 0, OF = 0, and ZF = 0. The flags indicate that the result

of the subtraction is a positive number. The next instruction, cmovg %rbx, %rax, is a

conditional move. It will only perform this register-to-register move if the condition flags

indicate that the previous instruction results are positive. Thus, the value stored inside of

%rbx is then copied into %rax in this case. The rmmovq instruction is then used to store

the value of %rax into the memory location that follows the quadword holding 23. The

halt instruction indicates the end of the program.

15

2.1.2 PIPE Machine

The textbook presents the PIPE machine by starting with a purely sequential

architecture known as SEQ and making modifications to transform it into a five-stage

pipeline processor. The SEQ machine describes a complete sequential processor that

performs the execution of an instruction across six stages: fetch, decode, execute, memory,

writeback, and PC update. Because a pipelined machine must calculate a PC value every

clock cycle, the first modification to the SEQ architecture is to rearrange the computational

stages to calculate and select the PC before the fetch. This resulting hardware is known as

SEQ+. The SEQ+ processor uses state registers to store computed values before updating

the program counter (PC) on the new clock cycle. The SEQ processor, on the other hand,

calculates the PC using the values computed in the same clock cycle.

The PIPE− hardware is a pipelined version of SEQ+ hardware derived by inserting a

pipe register before each computational stage. The PIPE− has five stages: fetch, decode,

execute, memory, and writeback. The pipeline registers F, D, E, M, and W are used to

provide input to these stages. Stages of the pipelined machine operate in lockstep on

different instructions; thus, five instructions can be overlapped in execution. The PIPE− and

PIPE are almost identical to each other. However, the PIPE processor contains additional

logic to prevent pipeline hazards. The PIPE− machine relies on the compiler writer or

Y86-64 programmer to prevent hazards by inserting nops in the code.

16

Figure 2.3 shows the hardware structure of the PIPE machine. The remainder of this

section will focus on the PIPE machine since this machine is the basis of the LY86-64

simulator.

17

Figure 2.3 Y86-64 PIPE machine’s hardware structure

18

Fetch Stage and the F Pipeline Register

In the fetch stage, the SelectPC unit selects the PC by choosing either the address

of a fallthrough instruction from a mispredicted branch (M_valA), the return address

(W_valM), or the predicted PC from the previous cycle’s instruction (predPC). After the PC

value is selected, the processor fetches the instruction in memory at the location f_pc. The

Stat unit calculates the status of the fetch to be either: OK, halt fetched, bad address, or

invalid opcode. Using the selected PC and the fetched instruction, the PC increment unit

calculates the following sequential instruction address (valP). The Predict PC unit

calculates the value for predPC, which is the predicted PC value for the next fetch. If the

instruction is a jump or a call, the unit predicts the next PC value to be valC, which is

the target of the jump or call. Otherwise, the Predict PC unit selects the value of valP

for predPC.

Decode Stage and the D Pipeline Register

The D pipeline register resides between the fetch stage and the decode stage to

store the output of the fetch stage, which is then inputted to the decode stage in the next

cycle. As can be seen in Figure 2.3, the D pipeline register contains the values for stat,

icode, ifun, rA, rB, valC, and valP. icode, ifun, rA, rB, and valC are obtained via the

instruction that was last fetched. These fields are identified in Figure 2.2. If the fetched

instruction identifies fewer than two registers, then rA and/or rB will be set to 0xf (no

register). For example, for the nop and halt instructions, rA and rB are both set to 0xf.

19

valC is set to the value identified as V, D, or Dest in Figure 2.3, or 0 if the instruction does

not contain an immediate value. valP contains the address of the next sequential

instruction. As described earlier, stat contains the status of the fetch. The decode stage

mainly determines values for valA and valB based on the instruction. For valA, the

Select + Fwd A unit chooses either valP from the D pipeline register, the value from

the A port of the register file, or values from the five forwarding sources from the later

pipeline stages. On the other hand, the decode stage does not use valP to determine

valB. It uses either value from the B port of the register file or values from the forwarding

sources. The topic of forwarding will be discussed in Section 2.2.1. In addition to choosing

the values for valA and valB, the decode stage determines the source registers for the A

and B ports and destination registers for the E and M ports.

Execute Stage and the E Pipeline Register

Similar to the D pipeline register, the E pipeline register is located between the

decode stage and the execute stage. The E pipeline register contains values produced by

the decode stage that are then used as input for the execute stage. Outputted values from

the decode stage are stat, icode, ifun, valC, valA, valB, dstE, dstM, srcA, and srcB.

In the execute stage, the most important component is the Arithmetic/Logic Unit

(ALU) which performs either addition, subtraction, exclusive-or, or bitwise and operation

depending upon the opcode. The component labeled alufun determines which operation

to perform. For OPq instructions, the fn field (see Figure 2.3) identifies the operation to

perform. For every other instruction, the alufun unit generates the signal that causes an

20

add operation to be performed. Thus, even for non-OPq instructions, the ALU will produce

an output. For example, in the case of a nop, the ALU will calculate 0 + 0. The inputs to the

ALU are provided by the two multiplexers labeled aluA and aluB. Depending on the

instruction, the value selected by aluA could be valA, valC, +8, or -8. For aluB, the value

could be either valB or 0. For example, for a popq instruction, the value selected by aluA

would be 8; the value selected by aluB would be the value of the stack pointer. If the

instruction in the icode field of the E register is an OPq, the unit labeled CC will calculate

the condition codes. If the instruction in the E register is a jXX or a cmovXX, a cond unit

(not identified in Figure 2.3) will use the current values of the condition codes and the

instruction’s function code (ifun) to determine whether the jump is taken or the

conditional move is performed. The output of cond, 0 or 1, is stored in the M register field

labeled Cnd.

Memory Stage and the M Pipeline Register

The M pipeline register is in between the execute stage and the memory stage. The

pipeline register contains values for stat, icode, Cnd, valA, dstE, dstM, and the valE

calculated by the ALU.

Some Y86-64 instructions either explicitly or implicitly cause memory to be

accessed. For example, the instructions mrmovq and rmmovq cause memory to be read

from and written to, respectively. In addition, popq, pushq, call and ret cause memory

to be read from (popq and ret) and written to (pushq and call). These memory

operations are performed during the memory stage. If the memory control unit indicates

21

memory read or write, the processor will access data memory. For read operations, valM

stores the value read from memory. For write operations, the processor will write valA to

the address specified by the instruction. Similar to the fetch stage, the memory stage can

change the stat field if there is an error when reading and/or writing to memory. Section

2.2.1 discusses how the PIPE machine handles exceptions in greater detail.

Writeback Stage and the W Pipeline Register

The W pipeline register between the memory stage and the writeback holds the

values for stat, icode, valE, valM, dstE, and dstM produced by the execute stage. The

writeback stage is the last stage in the pipeline. The writeback stage writes the value of valE

and valM to the register file. valE will be written to the register identified by dstE, and

valM will be written to the register identified by dstM. In addition, when a halt instruction

reaches the writeback stage, the PIPE machine halts the execution of the program.

2.1.3 Pipeline Hazards

When an instruction’s result or execution depends upon a previous instruction, a

dependence exists between those instructions. When a dependence can potentially cause

the wrong result to be produced, it is called a hazard. The two types of hazards are data

hazards and control hazards.

22

Data Hazards

A data hazard is a potential erroneous computation due to data dependence. A data

dependence occurs when the result calculated by one instruction is needed by another

instruction. On the pipeline, the operands are read during the decode stage while a result

is written in the later memory and writeback stages. If an instruction causes a register to be

modified, that instruction must reach the writeback stage before the result is written to the

register file. On the other hand, if an instruction will cause memory to be modified, the

instruction reaches the memory stage before the write occurs. In the instructions below,

the addq instruction uses the result of the xorq. These instructions overlap in execution

on the PIPE machine so that when the addq is being decoded, the xorq is being executed.

Thus, the value of the xorq is not in register %rax when the decode is retrieving the

operands for the addq.

xorq %rcx, %rax #write result in Writeback stage

addq %rsi, %rax #read operands in Decode stage

Control Hazards

A control dependence exists between a conditional jump instruction and the

instruction that follows that jump and between the conditional jump and the instruction at

the target. Specifically, an instruction A is control-dependent upon another instruction B, if

B controls whether or not A will be executed. For example, in the statements below, both

23

the addq and the xorq are control dependent upon the jg because if the jump is taken,

then the addq is not executed, and the xorq is and vice-versa if the jump isn’t taken.

jg target

addq %rax, %rcx

...

target: xorq %rdx, %rsi

Control hazards can occur on the PIPE machine for ret and conditional jump instructions

because the processor cannot reliably determine the next instruction’s location based on

the instruction in the fetch stage. On the PIPE machine, when a jump instruction reaches

the execute stage, the hardware determines whether the jump is taken or not. Thus, in the

cycle in which a conditional jump is fetched, it is unknown whether that jump will be taken.

The PIPE hardware handles this by predicting jumps as taken. However, when the jump

instruction reaches the execute stage, the processor may realize that the jump should not

have taken place. Without repairing the misprediction, erroneous results can occur. This is

called a control hazard.

Control hazards can also potentially occur on the PIPE machine when executing ret

instructions. The return location cannot be reliably determined until ret passes through

the memory stage, where the processor pops the return address from the stack. The return

address is also needed to predict the new PC value for the next instruction. In the PIPE

24

implementation, return addresses are not predicted. Therefore, processing the ret

instruction has its control logic, as described later.

Stalling and Bubbling

Stages of the pipeline operate in lockstep. The combinatorial logic of each stage is

computed in the first half of the clock cycle. When the clock edge rises, the result produced

by the stage is potentially stored in the pipe register that provides input to the next stage.

In addition to these inputs, each pipe register is fed control signals known as normal,

stall, and bubble. If the normal signal is asserted, then normal behavior occurs (the pipe

register stores the value of the input.) This behavior can be seen in Figure 2.4. Each pipeline

register has an input, a state, and an output. The input value is the output of the preceding

pipe stage. The state of the pipeline register and the output is the current value of the

pipeline register. When the clock edge rises, the state of the pipe register either stays the

same, becomes the value of the input, or becomes a nop, depending upon whether the

control signal is stall, normal, or bubble, respectively.

25

Figure 2.4 Pipeline control logic

In some situations, a pipe register needs to maintain the same value in the next

clock cycle that it has in the current cycle to prevent hazards. This occurs when the stall

control signal is applied to the pipe register, and the process is known as stalling. If an

instruction is stalled in a pipe register, then the stage that register is input to will repeat the

same process in the next cycle. For example, stalling the D register will cause the same

instruction to be decoded twice.

However, if an instruction is stalled in one pipe register, for example, D, it would be

incorrect to apply a normal signal to the next pipe register, E. This would cause the same

instruction to be in two pipe registers: D and E. Bubbling is a technique that injects a

dynamically generated nop instruction into a pipe register. All pipeline registers can

26

potentially be bubbled, except for the F register. This is because the F register does not

contain an instruction; it contains an address.

With stalling and bubbling, the overall flow of the pipeline can be dynamically

adjusted to prevent hazards. For data hazards, the PIPE processor can stall the D register

until the operands needed by the instruction in the D register are available. To prevent

control hazards caused by a ret instruction, the pipeline stalls the F register and bubbles

the D register for three consecutive cycles until the ret instruction reaches the writeback

stage.

In addition, bubbling is used to repair branch misprediction by changing the

instructions fetched from the target to nop instructions. Those instructions are in pipe

registers F and D when the conditional branch is being executed, and it is discovered that

the branch prediction is wrong. Changing those instructions to nop instructions is caused

by bubbling the D and E registers. This prevents the instructions in F and D from continuing

through the pipeline.

Forwarding

Forwarding is a technique that allows for a pipeline stage to directly send a value to

an earlier stage in the pipeline. Values computed by the ALU in the execute stage can be

directly sent to the decode stage. Values read from memory and values in the W pipeline

register can also be forwarded to earlier stages. For example, in the case of the two

instructions below, the andq instruction will be decoded in the same cycle that the ALU is

calculating the xorq result. The andq instruction needs the result of the xorq. Rather than

27

waiting until that the result is written to the register file in the writeback stage, the ALU

result will be fed back to the decode stage, where it will be selected by the hardware

labeled Sel+FwdA in Figure 2.3

xorq %rax, %rcx

addq %rcx, %rdx

Without forwarding, the hardware would need to stall the addq in the D register until the

result of the xorq is written to the register file.

Control Logic

The control logic of the PIPE machine handles four situations: prevention of

load/use hazards, prevention of control hazards due to ret instructions, recovering from

mispredicted branches, and exceptions. This control logic is expressed in Figure 2.5 using a

language known as HCL (hardware control language).

28

Figure 2.5 HCL for pipeline control

29

A load/use hazard can potentially occur when an instruction uses a value read from

memory by another instruction. The pipeline will stall the F and D pipeline register and

bubble the E register to prevent the hazard. This causes the dependent instruction to

remain in the D register until the instruction that reads from memory reaches the memory

stage. In HCL, this is expressed as: E_icode in { IMRMOVL, IPOPL } && E_dstM in

{ d_srcA, d_srcB }. Specifically, this expression is true if an instruction in the E register

causes a read from memory and if the register destination of that memory instruction

matches a source register of an instruction in the decode stage. For example, this can

occur with the following set of instructions:

mrmovq 0(%rax), %rcx

addq %rcx, %rdx

The control logic that handles ret instructions is expressed with: IRET in {

D_icode, E_icode, M_icode }. Specifically, this expression is true if the icode in the

D register, the E register, or the M register is ret. If the expression is true, the F register

will be stalled, and the D register will be bubbled. This causes the instruction that

sequentially follows the ret to be fetched and discarded repeatedly until the ret

instruction exits the memory stage. The repeated fetch is caused by stalling the F register.

Discarding the instruction is caused by bubbling the D register.

Recall that the PIPE machine predicts that jumps are taken by fetching the

instruction at the branch target in the cycle after the jump is fetched. Sometimes that

30

prediction is incorrect. The pipeline will detect the misprediction when the jump instruction

reaches the execute stage. The two instructions fetched at the branch target before the

misprediction is determined will need to be cleared from the pipeline. Since the branch is

in the execute stage when the misprediction is determined, those two instructions are in

the decode and fetch stages. To clear them from the pipeline, the D register and the E

register are bubbled. The HCL that expresses this logic is (E_icode == IJXX &&

!e_Cnd). Specifically, this expression is true if the icode in the E register is a jump and the

value calculated for e_Cnd is 0 (not taken).

When the fetch or execution of an instruction causes an exception, the exception

status travels through the pipeline with the instruction. Exceptions are detected during the

fetch and memory stages, and the program state is updated during the execute, memory,

and writeback stages. When an exception occurs, changes to the program state are

disabled for that instruction and the instructions that follow it. When the instruction with

an exception reaches the writeback stage, the pipeline halts. Changes to the program state

are disabled by bubbling the M register. This logic is expressed by the HCL: M_bubble =

m_stat in { SADR, SINS, SHLT } || W_stat in { SADR, SINS, SHLT }.

Specifically, this indicates that if the instruction with an exception (including a halt) is in the

W register or an instruction in the memory stage caused an exception (for example, by a

bad memory address), then the M register should be bubbled.

31

2.2 Angular

Angular is a TypeScript-based open-source framework led by the Angular Team at

Google [8]. Most developers use it for building single-page applications, which are web

apps that do not require the page to re-render during use. Angular provides much more

functionality than what is needed for our simulator. Thus, this section only covers what is

necessary to understand the LY86-64 implementation. We used the most updated version

of Angular, version 11, which was released on November 11, 2020.

2.2.1 Architecture

Components

Angular applications use a tree of components to define the components’ hierarchy.

Every component in a typical Angular application consists of an HTML template to display

the page’s content, a TypeScript class to represent the component’s behavior, and a CSS

selector. The CSS selector allows us to identify a component in the component tree

uniquely. For example, the ChatComponent can be represented as the <chat></chat>

tags in the HTML template by setting the CSS selector as “chat.” Additionally, there is an

optional CSS file to apply styles to the template.

Angular allows component interactions between a parent component and its

children components. A parent component can have zero or more children components,

and each parent component can pass information into its children components with input

binding. Specifically, when sharing data between parent and children components, data

32

can flow in two ways: from parent to children and from child to parent. The decorator

@Input is used to pass data from parent to children. Vice versa, the decorator @Output is

used to send data from child to parent.

View and source interaction within the component is called data binding. In Angular,

the view is the HTML template, and the source is the TypeScript file. There are three

different ways to pass data between the two. Data flows from view to source, source to

view, and both ways. Data binding helps with several features like disabling/enabling

buttons, displaying computed variables, setting boolean values for CSS, and many more.

Services

Many application elements are dependent on services, which are simple classes

with functions and values. Both components and services can be dependent on zero or

more services. With components, services are injected into the component with

Dependency Injection (DI). Once a service is injected into a component, the component gets

access to that service class. There are several reasons why one should use services: to

implement logic that is independent of any component, to provide access to shared data

and functions, and to allow external interactions like fetching data from a server.

An application-wide mechanism called the injector manages a container of reusable

dependencies. Besides managing dependencies, the injector also creates them. When a

component is dependent on some services, Angular will first check the injector for any

reusable instances. If none are found, then the injector will create one for each service and

33

add them to the container. Once added, the injector returns the services to the component

by calling the component’s constructor with the services as arguments.

Router

An optional router allows the client-side of the application to navigate between

various components. Users can configure a list of route definitions that will translate to

Route objects. Each Route object has two elements: a path holding the URL that the user

will interact with and a component specifying the component to display for this route.

When the user interacts with a link, the browser’s location changes; if the location change

matches a path specified by the router, the router maps to the component matching the

route and displays its view.

2.2.2 TypeScript

One of our most prominent reasons for using Angular over other frameworks is that

the basis of Angular is TypeScript, a JavaScript superset. TypeScript is an open-source

language built by the developers at Microsoft [10]. Like many other languages that perform

type-checking, TypeScript allows functions to have return types, declare variables, and write

method headers with types.

The TypeScript compiler performs type-checking at compilation time. On the other

hand, JavaScript evaluates expressions by treating operands as the same type. For

example, the boolean expression “1” == 1 will evaluate to true in JavaScript due to

34

implicit checking. In contrast, TypeScript would throw an error. In addition to the many

features of JavaScript, TypeScript allows for function overloading while JavaScript does not.

It has access modifiers like public, private, and protected for classes to encapsulate their

fields and methods. Figure 2.6 provides a summary of TypeScript additions to JavaScript [7].

In addition, TypeScript provides developers the means to use object-oriented

programming, where subclasses inherit from superclasses to be used to instantiate

objects. On the other hand, JavaScript uses a prototype-based inheritance approach that

allows objects to act as prototypes for other objects to inherit from them. Developers more

comfortable with object-oriented programming may find using prototype-based

inheritance to be awkward.

The TypeScript compiler compiles files with .ts extensions into JavaScript files with

.js extensions. Essentially, this means that all JavaScript code is valid TypeScript code and

should compile regardless of type declarations. All of the TypeScript features will then be

translated into JavaScript code as well.

35

Figure 2.6 TypeScript additions to ,avaScript

2.2.3 Summary and Example

In a typical Angular application, many parents and children components will make

use of services. The services get injected into each component through their constructors.

Once injected, all methods from the injected service are available to the component that

depends on it. To navigate between each component on the browser, the developer can

configure a URL to each component using the router.

For example, consider a developer-defined component, HomeComponent, that has

a child component, ChatComponent, which needs an array of messages, called messages,

from the parent. In Figure 2.7, the parent pushes two strings into the messages array in its

constructor. In the parent’s view shown in Figure 2.8, the HomeComponent passes

messages into the ChatComponent (represented as chat in the view) using the concept

36

of input binding. The type of binding used here is called “property binding,” which uses the

square brackets to set the child component’s messages property. The developer then uses

*ngFor, a built-in Angular template directive equivalent to a for loop, to iterate over the

messages array and print out each element.

Figure 2.7: The parent’s source file

37

Figure 2.8: The parent’s view file

Inside the child’s source shown in Figure 2.9, the messages property has an @Input

decorator to access the data passed in from the parent. After getting the messages array,

the child view can now use an *ngFor directive to loop through every element and display

them. Figure 2.10 is the child’s view file.

Figure 2.9: The child’s source file

38

Figure 2.10: The child’s view file

The developer also defined a UtilsService as shown in Figure 2.11 that provides

some utilities for the application. In our case, the UtilsService has a single method

called addChange() that takes in a string array as an argument and modifies it by adding

“changed” in front of every array element. The HomeComponent needs methods from this

service, so the developer injected the UtilsService into the HomeComponent using its

constructor. As a result, the HomeComponent has access to the printMessages()

method inside of the UtilsService.

39

Figure 2.11: UtilsService source file

Afterward, the developer wants to display the HomeComponent in the browser, so

they assigned a URL to the HomeComponent using the router. Figure 2.12 shows an

implementation of the router. Now, the clients can see the HomeComponent when they

visit / or /home URL in the browser.

40

Figure 2.12: The application’s router source file

Figure 2.13 demos our working code example. The parent component,

HomeComponent, has a blue background color, and the child component, ChatComponent,

has a red background to help differentiate between the two. The messages inside of the

ChatComponent are from the messages array in the HomeComponent. On the other hand,

the messages displayed inside the HomeComponent are from the newMessages array

modified by the changeMessages() method. When the parent component puts its child

component inside its view, the parent component allows the child component to be

displayed simultaneously.

41

Figure 2.13: Browser display of the HomeComponent and ChatComponent

42

Chapter 3: Related Work

This chapter provides a description of other Y86 or Y86-64 simulators and

emulators and compares them to the LY86-64.

3.1 YESS: A Y86 Pipelined Processor Simulator

The YESS (Y-Eighty-Six Simulator) project, developed by faculty at Appalachian State

University (AppState) [13], provides a set of labs that can be used to incrementally develop

a simulator for the Y86-64 machine. Unlike the other simulators described in this section,

YESS was designed to teach students about pipelined machines while implementing a

simulator for one. The project provides a set of labs and a set of scripts that students and

instructors can use to check for correctness. While the YESS project does not require the

student to create a GUI, it does output snapshots of the pipeline registers, register file, and

memory for each clock cycle. The YESS project takes .yo files as input and generates

outputs to the terminal. Figure 3.1 displays a one-cycle snapshot of the output of the YESS

project.

43

Figure 3.1 YESS output

The first line of the output indicates the current cycle of the snapshot. The cycle

count is followed by the output of the current values in the pipeline registers F, D, E, M, and

W. The next set of output lines are condition flags and register file values. The last set of

outputs are the contents of memory.

Similar to YESS, LY86-64 provides a visual representation of the pipeline. However,

while the YESS project shows the values of the pipeline registers and memory at each clock

cycle, it is difficult to determine from the snapshot when or why the processor stalls or

bubbles registers. In addition, YESS was designed for students to build, while the LY86-64

was designed for students to use in order to gain a better understanding of the control

logic.

44

3.2 Bogi Napoleon Wennerstrøm’s Y86-64 Simulator

Bogi Napoleon Wennerstrøm’s Y86-64 Simulator [15] is an extension of the Y86

Simulator created by Víctor Aguilar The design of the Y86 was based upon the IA-32

instruction set; the Y86-64 is based upon the X86-64. Thus, Wennerstrøm’s simulator

supports 64-bit signed integer operations as opposed to 32-bit that Aguilar uses. To

support 64-bit operations, Wennerstrøm uses the long.js library made by Daniel Wirtz [16].

Importing the long.js library allows access to a Long class that represents a 64-bit two’s

complement integer value.

Wennerstrøm’s Y86-64 simulator allows the user the ability to type their own

program in the simulator, assemble it, and perform the simulation. As the user steps

through each instruction, a green highlight indicates the current instruction being

processed. Unlike LY86-64, Wennerstrøm’s simulator provides a simulation of a sequential

architecture. Specifically, each step displays the change in machine state caused by the

execution of one instruction.

Figure 3.2 shows the layout of Wennerstrøm’s Y86-64 Simulator. The left component

is the code editor in which users can type or paste their Y86-64 assembly program. Clicking

the Assemble button causes the code to be error checked and assembled. The

upper-middle component contains the assembled object code that the simulator uses to

perform simulation. The lower middle component displays the registers in the register file,

the control flags, the status, and the PC of the simulator. The right component displays

memory.

45

https://boginw.github.io/js-y86-64/

Figure 3.2 Bogi Napoleon Wennerstrøm’s Y86-64 Simulator

In the memory component, there are two pointers, RBP and RSP. RBP points to the

beginning of the current stack frame, RSP points to the top of the stack. These indicate the

current values of the %rbp and %rsp registers. If the program changes the value of %rsp or

%rbp, these pointers will also change. For example, if the program sets %rsp to 0x0050,

then the RSP pointer will move to the 0x0050 location in the memory component.

3.3 Shu Ding’s Y86 Emulator

The Y86 Emulator, created by Shu Ding [6], is an open-source emulator. This

emulator provides a futuristic, sci-fi visualization of the Y86 PIPE machine. Unlike the

46

https://y86.js.org/

Y86-64, whose instructions came from the X86 ISA and supports 64-bit signed integer

operations, the Y86 instructions are based on the Intel Architecture, 32-bit (IA-32) ISA.

Ding used AngularJS to build the emulator. While Angular and AngularJS are made

by the same team at Google and have very similar names, they are fundamentally two very

different frameworks. Angular has a component-based architecture, while AngularJS has a

Model-View-Controller (MVC) framework as the central component. It manages data, logic,

and controls how the application behaves. Figure 3.3 shows a screenshot of Ding’s

emulator.

Figure 3.3 Shu Ding’s Y86 Emulator

Similar to the YESS project, Ding’s emulator also provides a snapshot of the Y86

pipeline at each clock cycle. At the top, there are several buttons to control the flow of the

emulation. These buttons provide users the ability to step forward or backward cycle by

47

cycle, continue execution until the halt is reached, or reset. There is also a cycles per

instruction (CPI) counter, a useful feature for performance analysis.

In the center of the emulator is the component that displays the object code. Ding

provided three different default files for users to use, or they can upload their own .yo

file. As the user steps through the instructions, a highlighter is used to indicate the

instruction that is about to be fetched. Depending on the instruction, the other

components are updated accordingly. Updatable components are registers, condition flags,

memory, and pipeline registers. In this emulator, Ding named the pipeline registers

“Fetch,” “Decode,” “Execute,” “Memory,” and “Write back” to match the pipeline stage’s

names, rather than F, D, E, M, and W as used in the textbook.

3.4 Linghao Zhang’s Y86 Simulator

Linghao Zhang’s Y86 Simulator [20] provides a more straightforward visualization

than the other simulators described in this chapter and supplies more functionality. In

addition to providing a snapshot of the pipeline at each clock cycle, this simulator also

simulates a cache, displays performance analysis, and allows the user to save program

output into a text file.

48

http://dnc1994.github.io/Y86-Simulator/

Figure 3.4 Linghao Zhang’s Y86 Simulator

Users can simply drag and drop a .yo file into the center to upload a file to the

simulator. Then, users can use the buttons to control the flow of the simulation. Figure 3.4

shows a screenshot of Zhang’s simulator. After running the simulation, users can save

outputs into a text file and view the performance analysis.

Figure 3.5 shows the section of the performance analysis that displays cache

performance and the performance penalty caused by hardware bubbles. The left pane

displays the number of data cache accesses that resulted in a hit or a miss. The right pane

displays the frequency of load/use instructions, mispredicted branches, and returns, and

the penalties caused by these.

49

Figure 3.5 Linghao Zhang’s simulator performance analysis

3.5 Tianhong Chu’s Y86 Simulator

Tianhong Chu’s Y86 Simulator [5] is an open-source simulator built using Java.

Unlike previously mentioned simulators, Chu’s simulator displays the final state of the

register file and memory instead of snapshots of each clock cycle. Figure 3.6 provides an

example of output for this Y86 simulator. The simulator displays the value of the program

counter, the machine status, and the values of the condition codes when the simulation

terminates. In addition, the simulator shows the contents of registers and memory before

the simulation begins and after the simulation terminates.

50

https://github.com/CtheSky/Y86-Simulator

Figure 3.6 Tianhong Chu’s Y86 output

Users are able to view changes to the register file and memory after each

instruction by using the -debug flag to enter the gdb. In the gdb, the user is able to step

through each instruction, run the entire program, break, then run until the next breakpoint,

display the instruction at a given address, display a value of a register, or display all

changed values in the register file and memory. The Y86 instructions are stepped through

instruction by instruction, thus simulating a sequential architecture.

51

3.6 Comparison

Table 3.1 provides a summary of the differences among the simulators described in

this chapter and LY86-64. Several of the works are older and thus are based upon the Y86

ISA, not the Y86-64 ISA. Ding’s, Zhang’s, and Chu’s simulators are all Y86 simulators.

Aguilar’s simulator, the simulator that Wennerstrøm’s simulator extends, is also based on

the Y86 ISA. On the other hand, the YESS project, Wennerstrøm’s, and LY86-64 are based

on the Y86-64 ISA. The YESS project defined a coding project for students to create their

own Y86-64 simulator. All others were designed for students to use.

Most simulators are browser-based and have a GUI. Chu’s simulator and the YESS

project do not have a GUI and are not browser-based. Although Chu’s simulator does not

have a GUI, users can still interact with the simulator using only the gdb. The YESS project,

however, does not support user interaction with the running simulator.

52

Zhang’s simulator and Ding’s emulator both display the results from performance

analysis. Specifically, Ding’s emulator displays cycles per instruction. Zhang’s simulator

outputs the number of misses, hits, and the miss rate assuming a data cache, as well as the

penalties caused by hazards. However, the performance analysis usefulness is limited by

the size of the input programs as well as the simplistic architecture and ISA. Their results

are not likely to reflect the results obtained on modern processors. However, they can help

the user understand how those results are calculated.

As mentioned in Section 2.1.2, a sequential architecture performs the execution of a

single instruction at a time across the six stages: fetch, decode, execute, memory,

writeback, and PC update. Wennerstrøm’s and Chu’s simulators are both simulating a

sequential architecture. They do not display a machine state that reflects instructions

overlapping in execution. The Step button fetches and executes one instruction to

completion, and the output reflects the change in machine state gained by executing that

one instruction. There are no pipeline registers in the display.

Several simulators are unique in their features. Chu’s simulator is the only one that

utilizes gdb. Wennerstrøm’s is the only one that allows users to provide Y86-64 assembly

code that can then be assembled in the browser. Zhang’s simulator is the only

implementation that also simulates a cache. Our LY86-64 simulator is the only one that

focuses on the control signals.

53

Chapter 4: LY86-64

In this chapter, we discuss our simulator, LY86-64 simulator, in detail. The source

code for LY86-64’s implementation can be found at https://github.com/lycb/ly86-64. Section

4.1 provides an overview of the simulator. Section 4.2 explores the design choices,

including the layout and color scheme. Section 4.3 discusses the implementation for each

component of the simulator.

4.1 Overview

The LY86-64 ("lee 86-64") simulator is a browser-based simulator developed to help

students visualize the Y86-64 machine. LY86-64 supports 64-bit signed integer operations.

Similar to Wennerstrøm’s Y86-64 Simulator, LY86-64 uses the long.js library [16] to gain

access to the Long class. Although inspired by other Y86-64 simulators, LY86-64 was

specifically designed to provide a visualization of the control logic and signals, in particular,

stalling and bubbling. Due to the nature of browser-based simulators, users can run the

simulation entirely in the browser without the need to download or install any other

software.

54

https://github.com/lycb/ly86-64

Figure 4.1 LY86-64 simulating a load/use hazard

Figure 4.1 is a screenshot of LY86-64 simulating a load/use hazard. The Y86-64

machine handles the hazard by stalling the F and D pipeline registers and bubbling the E

pipeline register. Note that the instruction highlighted at address 0x01f is using register

%rcx. When the instruction first reaches the decode stage, %rcx does not have the most

updated value because the mrmovq instruction has not reached the memory stage in order

to read the value from memory. LY86-64 provides a visual representation of how the

Y86-64 machine handles the hazards by taking advantage of colors. Specifically, the F and D

registers are colored yellow to indicate they have been stalled, and the E register is colored

orange to show it has been bubbled. In addition, the control logic that determined the

55

control signal to apply to these registers also appears in the visualization and is similarly

colored.

4.2 Design

The LY86-64 display is divided into three separate panes: left, right, and bottom. As

their names suggest, these panes are named after their positions on the device’s browser.

Figure 4.2 shows a wireframe for the LY86-64 website. The left pane has a parent

component called “control” that includes a group of control buttons, a clock cycle, and a

display for the object code taken from a preloaded or user-uploaded .yo file. The right

pane contains registers from the register file, condition codes (CC in Figure 4.2), and a

component for control logic explanations. Although the left and right panes contain

multiple components within themselves, the bottom pane only includes the pipeline

register component.

Figure 4.2 Layout wireframe

56

The left pane contains the buttons that the user will interact with to control the

simulation. First, the user must use the dropdown menu to select a pre-loaded .yo file or

upload their own file. The file is then loaded into the code component. The code

component displays the entire file line by line and highlights the first line of code that

contains an address. As the user steps through the instructions, the line highlighted is the

instruction that was just fetched which is therefore in the D pipeline register.

LY86-64 uses a central service to perform the hardware calculations to mimic the

Y86-64 PIPE machine. The right and bottom panes of LY86-64 contain components that

resulted from the interaction with the left component. In other words, the left pane

supplies the information to be calculated by the central service, and the results are

displayed in the right and bottom panes. For each clock cycle, the central service sends the

computed data to the components in the right and bottom panes.

Each component that needs data from the central service must inject the service

into its own component to access data fields and methods from that service. Recall in

Section 2.2.1, the act of injecting a service into a component is called Dependency Injection

(DI). Components that inject this central service are the control, register, condition codes,

control logic, and pipeline register components. The code and clock cycle components do

not need to inject this central service because their parent component, control, directly

interacts with the central service. The parent component can pass information to them as

they do not need to be involved with any calculations directly.

57

4.3 Implementation

The LY86-64 simulator has a total of nine Angular components and six services.

Table 4.1 lists the services and the hierarchy of the components.

At the highest level of the component tree are the SimulatorComponent (LY86-64

simulator) and HomeComponent (a homepage for introduction and directions on using the

simulator). The purpose for splitting the simulator and the homepage into two separate

components is because of Angular routers. The route / or /home redirects the user to the

HomeComponent. On the other hand, the /simulator leads the user to the

SimulatorComponent that displays LY86-64. Figure 4.3 is the code representation of the

Angular router that our application uses to redirect users.

58

Figure 4.3 Angular router for the LY86-64 simulator

Within the SimulatorComponent, there are five components: ControlComponent

(main component for controlling the flow of the simulation), RegistersComponent (for

displaying the register file), ConditionFlagsComponent (for displaying the condition

flags), ControlLogicComponent (for explaining control logic when a hazard occurs), and

PipelineRegComponent (for displaying the F, D, E, M, and W pipeline registers). Figure 4.4

shows the view file for the SimulatorComponent. Recall in Section 2.2.1 that a view file is

an HTML template for an Angular component. Each pane, left, right, and bottom, gets their

own <div></div> for styling and organization purposes. The CSS selector for each

component allows the view to recognize a component. For example, the

ControlComponent has the tag <app-control></app-control> and the

RegistersComponent has the tag <app-registers></app-registers>.

59

Figure 4.4 View file for SimulatorComponent

The LY86-64 simulator also utilizes six services to run the simulation. An essential

service is the CpuService, as it takes an instruction from the ControlComponent,

performs calculations for the different pipeline stages, and sends the computed data to

other components. However, the CpuService depends on several other services to work.

Other services include ParserService (for parsing instructions into JSON objects),

ConditionCodesService, RegisterService, MemoryService, and UtilsService

(for utility methods). Section 4.3.2 provides more details about these services.

4.3.1 Components

LY86-64 uses Angular components for its GUI. Except for the ControlComponent,

all other components are for displaying data computed by the CpuService and don’t

include any underlying logic. As discussed in Section 4.2, the components in the left pane

(ControlComponent) supplies information to a central service (CpuService), and the

60

central service will then send computed information to the components in the right and

bottom panes for display. In this section, we discuss the components of LY86-64 with a

focus on the ControlComponent.

ControlComponent

The ControlComponent is a parent component for the ClockCycleComponent

and the CodeComponent. Within the ControlComponent are the control buttons that

allow users to control the flow of the simulation, a dropdown menu for file selection, and a

home button that redirects the user back to the HomeComponent. Figure 4.5 is a

representation of the ControlComponent in HTML. For the dropdown menu, LY86-64

preloaded several files. The files preloaded illustrate various control hazards to help

students understand how the Y86-64 machine reacts to such hazards. Specifically, the jl

example shows how the Y86-64 handles a mispredicted branch, loaduse illustrates a

load/use hazard, and addOne demonstrates control hazards caused by ret instructions.

61

Figure 4.5 View file for ControlComponent

LY86-64 also has the option for users to upload their own .yo files. Currently,

LY86-64 only supports .yo extensions as it cannot parse and assemble .ys files. Users

must assemble their .ys code beforehand [3] or use the pre-loaded files to use the

simulator. LY86-64 performs a check for a correct extension to prevent errors and uses a

FileReader object to read the file’s contents asynchronously. The FileReader reads the

file and separates instruction lines from comment lines, and pushes both types of lines into

the fileContent array as a Line object. The Line object has the following properties: id,

textLine (string representation of the entire line being read), isAnAddress (boolean to

distinguish between instructions and comments), isCurrent (for highlighting the current

instruction in the D register), and parsedLine (provides properties for an address and the

62

hex representation of the instruction). The ParserService parses the textLine and

returns an AddressLine object with the address and instruction properties.

With the fileContent array populated, the ControlComponent passes the array

to the CodeComponent through input binding. Thus, the CodeComponent now has access

to the fileContent array and can display its contents with CSS styling added to it. Figure

4.6 provides the view file for the CodeComponent. There are several CSS classes to

distinguish properties for different control logic. For example, a stalled line will have the

class=”current-stalled” attribute, and a bubbled line will have the

class=”current-bubbled” attribute.

Figure 4.6 View file for the CodeComponent

The line will be colored a specific color to show the control logic depending on the

class attribute. Specifically, suppose a normal signal was applied to the D register. In that

case, the just-fetched instruction will be colored purple, an instruction is colored yellow if

the D register was stalled, and an instruction will be colored orange if the D register is

bubbled. Figure 4.7 shows a rendering of the CodeComponent.

63

Figure 4.7 Render of the CodeComponent

The ControlComponent also includes a set of buttons with which the user can

control the simulation. The control buttons allow the user to either run through the whole

program (Continue), step through one instruction at a time (Step) or reset the entire

program (Reset). Each time the user clicks Step, the line highlighter highlights the next

predicted instruction. Figure 4.8 is a rendering of the control buttons. These buttons are, by

default, disabled until the user loads a file into the simulator.

Figure 4.8 Render of the control buttons

64

Every time the user clicks Step, the onClickStep() event handler executes. This

method sends the current instruction to the CpuService and sets the next predicted

instruction as the new current instruction. Figure 4.9 is an implementation of the Step

button event handler. The Continue button event handler is a loop of calls to the Step

button event handler. When the program reaches a halt, a boolean variable, stop, is set to

true, which prevents the loop from sending any other instructions to the CpuService.

Figure 4.9 Step button event handler

PipelineRegComponent

The PipelineRegComponent in the bottom pane illustrates what the Y86-64

machine does when it encounters a hazard. In addition to using colors to show the

registers stalled or bubbled, LY86-64 also informs the user of the control logic by putting

the status next to the registers’ names. For example, in Figure 4.10, the pipeline register

65

names are F (STALL), D (STALL), E (BUBBLE), M (NORMAL), and W (NORMAL) to indicate that

the F and D registers were stalled, the E register was bubbled, and the normal signal was

applied to the M and W registers. LY86-64 displays all values for each pipeline register.

Some registers also include an address (addr) to make it easier for users to connect the

contents of the pipeline register to the specific instruction in the Y86-64 input program.

Figure 4.10 Render of the PipelineRegComponent

Other Components

The RegistersComponent, ConditionFlagsComponent, and

ControlLogicComponent display values calculated by the CpuService. The

RegistersComponent shows the fifteen registers in the register file. The LY86-64 provides

a 64-bit hex representation and a decimal representation of the value in a register. The

decimal representation is convenient since the immediate values in the Y86-64 code may

be written in decimal. The ConditionFlagsComponent displays the condition codes: OF,

SF, and ZF. Each of these condition codes displays either a 0 or a 1 under their respective

labels to indicate whether the execution of the most recent OPq instruction produced an

overflow, a negative result, or a zero. The CpuService sends a value every clock cycle to

66

allow the RegistersComponent and the ConditionFlagsComponent to be updated,

even if the values are the same as the previous clock cycle.

While the PipelineRegComponent illustrates what happens when the Y86-64

machine handles a control hazard, the ControlLogicComponent displays the HCL to

explain why a certain pipeline register stalled or bubbled. The strings for each pipeline

register are formed within the CpuService by doing simple string concatenation. For each

clock cycle, the CpuService sends the string to the ControlLogicComponent for display.

Figure 4.11 is a render of the ControlLogicComponent during a load/use hazard.

Figure 4.11 Render of the ControlLogicComponent

4.3.2 Services

Unlike components, services are not visible to the user. Multiple components can

use the same service, and services do not have a hierarchy tree to dictate data flow.

Components use services by injecting them into the components’ source files. Services

implement logic independent of any component and provide access to shared data and

functions to any component a service is injected into.

67

ParserService

When the user first loads a file into LY86-64, the ControlComponent uses the

ParserService to parse instructions. Every instruction has an address and a hex

representation of that instruction. For example, the line 0x001:

30f44800000000000000 has the address 1 (0x001) and the instruction

30f44800000000000000. As mentioned in Section 4.3.1, the ParserService parses the

textLine (the line read from the input file) into an AddressLine object with the

properties address and instruction. LY86-64 uses a regular expression to parse the

textLine. To prevent the ParserService from accidentally parsing non-instruction lines

(comment lines), LY86-64 performs a check to see if there are both an address and

instruction bytes in the textLine before parsing.

CpuService

The main entry to using the CpuService is from the ControlComponent. The

onClickStep() event handler for the Step button calls the doSimulation() method

within the CpuService. This method performs the simulation of each pipeline stage (fetch,

decode, execute, memory, and writeback), sets the control logic strings, and tells the

LY86-64 whether to stop the simulation. Figure 4.12 provides the implementation of the

doSimulation() method.

68

Figure 4.12 Simulation logic inside of the CpuService

Recall in Section 2.1.3 that each pipeline register has an input, a state, and an

output. The input value is the output of the preceding pipe stage. The state of the pipeline

register and the output is the current value of the pipeline register. For each clock cycle, the

clock starts as low, then rises to a high. LY86-64 simulates these behaviors of clock lows

and clock highs with two sets of functions. For each stage, the CpuService has clock low

and clock high methods. For example, the fetch stage has doFetchClockLow() and

doFetchClockHigh() methods. The clock low method simulates the combinational logic

within the stage. The clock high method updates the state of the pipeline register.

Depending on the control signal, the state either stays the same (stall), becomes the value

69

of the input (normal), or becomes a nop (bubble). The CpuService also calls these clock

low and high methods in reverse order to mimic the parallel behavior of the hardware. The

order is as follows: write back, memory, execute, decode, then fetch.

Miscellaneous Services

ConditionCodesService, RegisterService, and MemoryService provide

functions to help manage the condition codes, register file, and memory aspects of the

simulator. The UtilsService, on the other hand, has utility functions like translating a

register’s name to its respective numeric representation, translating icode and ifun to

instructions, padding binary and hex, checking for overflow, and many more.

ConditionCodesService provides getters and setters to allow CpuService

access to the condition codes. During the execute stage, CpuService builds an array of

condition codes to send to ConditionFlagsComponent for display.

The constructor of the RegisterService creates an array of objects, each

representing a register in the register file. The default object, before changes are made to

the register file, contains the name of a register, a Long object for the number zero, and a

hex string for 0x0000000000000000. RegisterService also provides getter and setter

methods that allow CpuService to set and get values by the name of the register. This is

supported by using the register2index() method from UtilsService for translating

the register’s name to its numeric representation. For example, the index 0 in the array of

registers from RegisterService can be set by calling setValueByRegister(“RAX”,

70

valE). This call updates both the hex string and the decimal representation to valE for

index 0 (register %rax).

Similar to RegisterService, MemoryService also has an array of Long objects to

represent memory. Each element contains a byte of data. Every multiple of eight in this

array contains a value of size 64 bits. MemoryService provides functions to get and set a

byte of data or 64 bits of data. Functions to get or set 64 bits of data using a method in the

UtilsService to build a Long object from the bytes in the memory array.

71

Chapter 5: Results

Appalachian State University offers two systems courses, which both utilize the

Bryant and O'Hallaron textbook [4]: Computer Systems 1 and Computer Systems 2. The

Computer Systems 1 course covers data representation, machine-level representation of

programs, and processor architecture. Students in the Computer Systems 1 course are

asked to implement a simulator for the Y86-64 PIPE machine in C++. That project is

described in Section 3.1. Among the most difficult concepts for students to understand is

the topic of processor controls signals, specifically the need for and the impact of stalling

and bubbling pipeline registers. The purpose of the development of LY86-64 was to enable

students to better understand those concepts.

After developing LY86-64, we asked students from Appalachian State University who

are currently taking Systems 1 or took Systems 2 in the previous semester to use our

simulator and complete a survey. In this chapter, we compare and discuss the results of

the surveys from the two groups of users: those who were learning about the Y86-64

machine when they completed the survey (Group 1) and those who had studied it in a

previous semester (Group 2).

72

5.1 User Experience

A total of 47 students experimented with the LY86-64 simulator and completed the

survey. Thirty-one of those students were in Group 1 (current experience), and 16 of those

students were in Group 2 (past experience).

5.1.1 User-friendliness

The decision was made to implement a browser-based simulator over a

command-line application or downloadable software in order to allow the use of the

simulator without requiring installation and to avoid compatibility issues between different

operating systems. We expected that users would work with a variety of different operating

systems such as Windows, macOS, and Linux distributions. In addition, users, in particular

students, are typically not administrators of the machines available for educational use,

and it is troublesome or impossible for users to download software on those machines.

With these concerns in mind, a browser-based simulator was determined to be the best

option. Any user with a browser can access it without admin restrictions and operating

system compatibility issues. From the survey results, we learned that every student could

access LY86-64 from their choice of browser. The list of browsers that students used

includes Chrome, Firefox, Safari, Internet Explorer, Microsoft Edge, and Brave.

While LY86-64 does not allow users to paste or type their own program, it does

allow the user to upload their own .yo file. To upload a file, the user must select “Custom

files'' in the dropdown menu in LY86-64. In Group 1, 74.2% of participants either strongly

73

agree or somewhat agree that it is easy to upload their own file, 16.1% were indifferent,

and 9.7% did not upload their own file. In Group 2, 56.3% of participants either strongly

agree or somewhat agree, and 43.8% did not upload their own file. With these results, we

can conclude that most users think uploading a file is easy to do. 0% of participants

strongly disagree with the statement, “It is easy to upload my own .yo file.” Figure 5.1

shows pie charts for users’ thoughts on uploading their own .yo file.

Figure 5.1 User opinion on uploading a .yo file

74

Other survey statements include “Stepping through the instructions is…,” “Resetting

the simulator is…” with the majority of participants thinking that both tasks are either very

easy or somewhat easy to do. This finding was consistent among both Group 1 and Group

2. Figure 5.2 shows the results for what users think about stepping through the

instructions.

Figure 5.2 User opinion on stepping through instructions

75

5.1.2 Output Understanding

The HomeComponent, as mentioned in Section 4.3, is a component specifically for

the homepage that users can access by going to the /home or / routes. Here, we have a

section for the LY86-64 documentation to explain specific colors, functionalities for each

component, etc. Among the respondents, 93.5% of users in Group 1 and 87.5% of users in

Group 2 read the documentation. With these results, we expected both groups to have a

general understanding of the colors in the PipelineRegComponent and

CodeComponent, and the HCL in the LogicComponent.

Figure 5.3 shows the responses for Group 1 and Group 2 in regards to their

understanding of the colors applied to the pipeline register component. (Recall, a pipe

register was colored green if the normal signal was applied to it, yellow if the stall signal

was applied, and orange if the bubble signal was applied.) 93.5% of Group 1 understood

the use of colors in LY86-64 right away; this is the same percentage of respondents who

read the documentation. However, only 68.8% of Group 2 understood the colors

immediately even though 87.5% read the documentation. Regardless, with additional

experimentation, 100% of users ultimately understood the use of colors in the simulator.

This shows that the use of colors in the LY86-64 simulator is easy to understand.

76

Figure 5.3 User understanding of colors

Recall that the LogicComponent displays the HCL that determines why certain

pipeline registers are stalled or bubbled. In Group 1, we find that 96.8% of users

understood the HCL. While in Group 2, only 75% of users understood. This result indicates

that users who are currently learning about the Y86-64 are more likely to understand why

the pipeline registers stalled or bubbled. Figure 5.4 contains pie charts that illustrate the

users’ perceived understanding of the HCL in the LogicComponent.

77

Figure 5.4 User understanding of the HCL

5.2 Improved Understanding

LY86-64 was developed in order to allow students to develop a better

understanding of the difficult concepts of stalling and bubbling. Since the students in

Group 1 were currently studying those concepts when they experimented with LY86-64, the

78

survey developed for that group specifically asked them whether the simulator improved

their understanding. Figure 5.5 shows a chart displaying the result of that survey question;

96.8% of the students indicated an improved understanding.

Figure 5.5 Group 1 understanding of stalling and bubbling

Since Group 2 had studied the material in a previous semester, we asked the

participants their perceived understanding of the concepts of bubbling and stalling when

they were students in CS 3481. Among Group 2 respondents, 12.5% indicated minimal

understanding of the concepts of bubbling and stalling, 56.3% understood the material

pretty well or completely, and 31% provided a neutral response. Figure 5.6 shows a chart

displaying group 2’s understanding of the concepts of stalling and bubbling. However, after

using the LY86-64 simulator, 100% of participants from Group 2 answered yes to the

79

question, “Could this simulator enable students to develop a better understanding of the

concepts of bubbling and stalling?”.

Figure 5.6 Group 2 understanding of stalling and bubbling

80

Chapter 6: Future Work

This thesis described the design and evaluation of a functional, browser-based GUI

that simulates the Y86-64 PIPE machine. LY86-64 allows users to upload a Y86-64 program

or select a built-in Y86-64 program and step through the execution of the program cycle by

cycle. While stepping through the program, the contents of general purpose registers,

pipeline registers, and memory are displayed. In addition, each pipeline register is colored

in a way that indicates what control signal (normal, stall, or bubble) was applied to the

register. The GUI also displays the Hardware Control Logic (HCL) that determined those

signals.

Students who had either taken Computer Systems 1 or were enrolled in Computer

Systems 1 were recruited to experiment with the LY86-64 simulator and complete a survey.

Survey results indicated that the simulator functioned properly on a broad set of browsers

and was easy to use. In addition, nearly 100% of the respondents indicated that the

simulator could improve their understanding of the concepts of bubbling and stalling. The

remainder of this chapter discusses future work.

Effectiveness Study

Although the surveys given to current and former Systems I students provided

promising results, they do not provide the best measurement of improved understanding.

Students may believe the simulator increased their understanding of the Y86-64 PIPE

81

machine control logic when it actually did not. A more robust study of the effectiveness of

LY86-64 will be undertaken in Fall 2021. Students taking the Systems 1 course will take a

quiz that contains questions about the Y86-64 PIPE machine control logic. After the first

quiz, students will be asked to use the LY86-64 simulator. After using the simulator,

students will take another to measure a change in the understanding of the concepts of

stalling and bubbling.

Error Checking For User-Uploaded Files

LY86-64 currently provides no error checking for user-uploaded files other than

checking whether a file has a .yo extension before running the simulation. In addition, the

.yo extension is used both for files containing Y86-64 instructions and for files containing

Y86 instructions. If the user uploads a .yo file containing Y86 instructions, the simulator

will not work correctly. Error checking a file can include checking if the instructions are

properly formatted and encoded. For example, a valid encoding for an instruction starts

with 0x and is followed by three hex digits that identify the location in memory in which the

instruction will be loaded. The address is followed by a colon and a space, followed by one

to ten bytes, in hex, for the instruction encoding. At present, if the user uploads a .yo file

with errors, unpredictable results can occur. Error checking the input file would be

particularly useful for users writing the encoding of instructions by hand.

82

Accessibility for Those With Visual Impairments

This simulator relies heavily on colors to help users understand the control logic.

Unfortunately, if the user has a visual impairment, LY86-64 may exclude such users from

being able to learn from the simulator. Visual impairment can include but is not limited to

color blindness and blindness. Increasingly, technology is being designed in a way that

does not prohibit use by users with visual impairments. For example, the game League of

Legends added a colorblind mode in 2012 for players with deuteranopia (red-green

colorblindness) to help players distinguish between the friendly’s minions and the foe’s

minions [11]. Currently, the LY86-64 simulator provides some support for those with visual

impairments by including labels next to the pipeline registers’ headings and in the logic

component. For example, F (STALL) indicates the F register is stalling. However, we want

users with other visual spectrums to fully experience our simulator’s colorful visuals. We

also want to accommodate users with a blindness disability that rely on screen readers,

refreshable braille displays, and speech recognition software to access technology. This

type of technology falls under the category of Assistive Technology (AT), which describes

hardware or software that helps people with disabilities to use technology. In the future,

we want blind individuals to be able to use LY86-64 with just a keyboard to navigate

between the elements.

UI Changes

LY86-64 currently uses a darker purple background and the smallest browser size

recommended is 544x807, assuming the user’s browser is zoomed in at 100%. To make

83

LY86-64 mobile and tablet-friendly and provide a dark and light mode, some UI changes

are needed. While the size recommended fits most tablet sizes, it does not fit all. Smaller

tablets can be supported by adding mobile and tablet-supported CSS properties. However,

fitting a layout meant for a bigger screen on a smaller screen like a smartphone can be

challenging. This requires redesigning the layout for a smaller screen. Regarding colors,

some participants in the survey suggested adding a dark and light mode toggle to the UI to

better attract and engage users.

Delay Animation Between Each Cycle

The Continue button currently runs through the entire program until the program

halts without any delay. In other words, when the user clicks Continue, the simulator

updates every value to the very last clock cycle. Another enhancement would be to provide

a cycle-by-cycle animation of the pipeline that does not require the user to press Step.

Forwarding

Like stalling and bubbling, forwarding is another challenging concept for students to

grasp. As mentioned in Section 2.1.3, forwarding is a technique that allows for a pipeline

stage to directly send a value to an earlier stage in the pipeline. Since there are a number of

values from both the pipeline stages and pipeline registers that can be forwarded, adding

of visual aids (for example, highlighting values forwarded) would be difficult as the user

cannot see values in the pipeline stages. Although LY86-64 simulates forwarding, the

LogicComponent currently does not display anything to inform the user that forwarding

84

of values occurred. An improvement would be to illustrate the forwarding logic in the HCL

or to redesign the layout altogether to provide a visualization of forwarding.

85

References

[1] Rashmi Agrawal, Sahan Bandara, Alan Ehret, Mihailo Isakov, Miguel Mark, and Michel A.
Kinsy. 2019. The BRISC-V Platform. Proceedings of the Workshop on Computer Architecture
Education - WCAE'19 . DOI:http://dx.doi.org/10.1145/3338698.3338891

[2] Miloš Bečvář and Stanislav Kahánek. 2007. VLIW-DLX simulator for educational
purposes. Proceedings of the 2007 workshop on Computer architecture education - WCAE '07 .
DOI:http://dx.doi.org/10.1145/1275633.1275636

[3] Randal E. Bryant and David R. O'Hallaron. 2015. APP3e Student Site. Retrieved April 30,
2021 from http://csapp.cs.cmu.edu/3e/students.html

[4] Randal E. Bryant and David R. O'Hallaron. 2016. Computer systems: A Programmer's
Perspective 3rd ed., Harlow, United Kingdom: Pearson.

[5] Tianhong Chu. 2018. Y86-Simulator. Retrieved April 29, 2021 from
https://github.com/CtheSky/Y86-Simulator

[6] Shu Ding. 2017. Y86 Emulator. Retrieved September 29, 2020 from
https://github.com/shuding/y86

[7] Ralf S. Engelschall. 2017. Retrieved April 29, 2021 from http://es6-features.org/

[8] Google. 2021. Angular Documentation. Retrieved April 29, 2021 from
https://angular.io/docs

[9] Kenneth E. Hoganson. 2002. High-performance computer architecture and algorithm
simulator. Journal on Educational Resources in Computing 2, 1 (2002), 131–148.
DOI:http://dx.doi.org/10.1145/545197.545204

[10] Microsoft. 2021. TypeScript Documentation. Retrieved April 29, 2021 from
https://www.typescriptlang.org/docs/

[11] Moonopal. 2012. Colorblind Mode. Retrieved April 29, 2021 from
https://support-leagueoflegends.riotgames.com/hc/en-us/articles/201752844-Colorblind-M
ode

[12] Seikoh Nishita. 2004. MKit simulator for introduction of computer architecture.
Proceedings of the 2004 workshop on Computer architecture education held in conjunction

86

with the 31st International Symposium on Computer Architecture - WCAE '04 (2004).
DOI:http://dx.doi.org/10.1145/1275571.1275598

[13] Cindy Norris and James Wilkes. 2007. YESS: a Y86 pipelined processor simulator.
Proceedings of the 45th annual southeast regional conference on - ACM-SE 45.
DOI:http://dx.doi.org/10.1145/1233341.1233369

[14] Kian L. Pokorny. 2015. Creating a Computer Simulator as a CS1 Student Project.
Proceedings of the 46th ACM Technical Symposium on Computer Science Education (2015).
DOI:http://dx.doi.org/10.1145/2676723.2677210

[15] Bogi Napoleon Wennerstrøm. 2017. js-y86-64. Retrieved April 29, 2021 from
https://github.com/boginw/js-y86-64

[16] Daniel Wirtz. 2018. long.js. Retrieved April 29, 2021 from
https://github.com/dcodeIO/long.js

[17] Gregory S. Wolffe, William Yurcik, Hugh Osborne, and Mark A. Holliday. 2002. Teaching
computer organization/architecture with limited resources using simulators. Proceedings
of the 33rd SIGCSE technical symposium on Computer science education - SIGCSE '02
(2002). DOI:http://dx.doi.org/10.1145/563340.563408

[18] Cecile Yehezkel, William Yurcik, Murray Pearson, and Dean Armstrong. 2001. Three
simulator tools for teaching computer architecture. Journal on Educational Resources in
Computing, 1(4), p. 60–80. DOI:http://dx.doi.org/10.1145/514144.514732

[19] William (Bill) Yurcik. 2002. Special issue on specialized computer architecture
simulators that see the present and may hold the future. Journal on Educational Resources
in Computing 2, 1 (2002), 1–3. DOI:http://dx.doi.org/10.1145/545197.545198

[20] Linghao Zhang. 2015. Y86-Simulator. Retrieved April 29, 2021 from
https://github.com/dnc1994/Y86-Simulator

87

